Cavity optomechanics: - interactions between light and nanomechanical motion

Florian Marquardt

University of Erlangen-Nuremberg, Germany, and Max-Planck Institute for the Physics of Light (Erlangen)

Radiation pressure

Johannes Kepler
De Cometis, 1619

(Comet Hale-Bopp; by Robert Allevo)

Radiation pressure

Johannes Kepler De Cometis, 1619

Radiation pressure

Nichols and Hull, 1901 Lebedev, 1901

A PRELIMINARY COMMUNICATION ON THE PRESSURE OF HEAT AND LIGHT RADIATION.

BY E. F. NICHOLS AND G. F. HULL.

AXWELL, dealing mathematically with the stresses in an electro-magnetic field, reached the conclusion that "in a medium in which waves are propagated there is a pressure normal to the waves and numerically equal to the energy in unit volume."

Nichols and Hull, Physical Review 13, 307 (1901)

Radiation forces

- Optical tweezers
- Optical lattices

...but usually no back-action from motion onto light!

Optomechanics on different length scales

LIGO – Laser Interferometer Gravitational Wave Observatory

$$\omega_{M} \sim 1 \text{kHz} - 1 \text{GHz}$$
 $m \sim 10^{-12} - 10^{-10} \text{kg}$
 $x_{\text{ZPF}} \sim 10^{-16} - 10^{-14} \text{m}$
 $x_{\text{ZPF}} = \sqrt{\hbar/(2m\omega_{M})}$

Mirror on cantilever – Bouwmeester lab, Santa Barbara

$$\hat{H} = \hbar\omega_{\text{cav}} \cdot (1 - \hat{x}/L)\hat{a}^{\dagger}\hat{a} + \hbar\omega_{M}\hat{b}^{\dagger}\hat{b} + \dots$$

$$\hat{x} = x_{\text{ZPF}}(\hat{b} + \hat{b}^{\dagger})$$
 $x_{\text{ZPF}} = \sqrt{\frac{\hbar}{2m\Omega}}$

$$\hat{H} = \hbar \omega_{\text{cav}}(\hat{x}) \hat{a}^{\dagger} \hat{a} + \hbar \omega_{M} \hat{b}^{\dagger} \hat{b} + \dots$$

...any dielectric moving inside a cavity generates an optomechanical interaction!

Basic physics: Statics

Experimental proof of static bistability:

A. Dorsel, J. D. McCullen, P. Meystre,

E. Vignes and H. Walther:

Phys. Rev. Lett. 51, 1550 (1983)

Basic physics: dynamics

finite optical ringdown time κ^{-1} – delayed response to cantilever motion

Höhberger-Metzger and Karrai, Nature **432**, 1002 (2004): ____ 300K to 17K [photothermal force]

The zoo of optomechanical (and analogous) systems

Optomechanics: general outlook

Fundamental tests of quantum mechanics in a new regime: entanglement with 'macroscopic' objects, unconventional decoherence? [e.g.: gravitationally induced?]

Mechanics as a 'bus' for connecting hybrid components: superconducting qubits, spins, photons, cold atoms,

Precision measurements
[e.g. testing deviations from Newtonian gravity due to extra dimensions]

Optomechanical circuits & arrays Exploit nonlinearities for classical and quantum information processing, storage, and amplification; study collective dynamics in arrays

Towards the quantum regime of mechanical motion

PHYSICS TODAY

mechanic's toolbox

Putting Mechanics into Quantum Mechanics

Nanoelectromechanical structures are starting to approach the ultimate quantum mechanical limits for detecting and exciting motion at the nanoscale. Nonclassical states of a mechanical resonator are also on the horizon.

Keith C. Schwab and Michael L. Roukes

everything moves! In a world dominated by electronic devices and instruments it is easy to forget that all measurements involve motion, whether it be the motion of electrons through a transistor, Cooper pairs or quasiparticles through a superconducting quantum interference device (SQUID), photons through an optical interferometer—or the simple displacement of a mechanical element

achieved to read out those devices, now bring us to the realm of quantum mechanical systems.

The quantum realm

What conditions are required to observe the quantum properties of a mechanical structure, and what can we learn when we encounter them? Such questions have received

Schwab and Roukes, Physics Today 2005

- nano-electro-mechanical systems
 Superconducting qubit coupled to nanoresonator: Cleland & Martinis 2010
- optomechanical systems

Optomechanics (Outline)

Displacement detection

Linear optomechanics

Nonlinear dynamics

Interesting quantum states

Towards Fock state detection

Hybrid systems: coupling to atoms

Optical displacement detection

Thermal fluctuations of a harmonic oscillator

Classical equipartition theorem:

ical equipartition theorem:
$$\frac{m\omega_M^2}{2}\langle x^2\rangle = \frac{k_BT}{2} \Rightarrow \langle x^2\rangle = \frac{k_BT}{m\omega_M^2}$$
 extract temperature!

Possibilities:

- Direct time-resolved detection
- Analyze fluctuation spectrum of x

Fluctuation spectrum

Fluctuation spectrum

Fluctuation-dissipation theorem

General relation between noise spectrum and linear response susceptibility

$$\left\langle \delta x \right\rangle(\omega) = \chi_{xx}(\omega) F(\omega)$$
 susceptibility

$$S_{xx}(\omega) = \frac{2k_BT}{\omega} \text{Im}\chi_{xx}(\omega)$$
 (classical limit)

Fluctuation-dissipation theorem

General relation between noise spectrum and linear response susceptibility

$$\left\langle \delta x \right\rangle(\omega) = \chi_{xx}(\omega) F(\omega)$$
 susceptibility

$$S_{xx}(\omega) = \frac{2k_BT}{\omega} \mathrm{Im} \chi_{xx}(\omega)$$
 (classical limit)

for the damped oscillator:

$$m\ddot{x} + m\omega_M^2 x + m\Gamma\dot{x} = F$$

$$x(\omega) = \frac{1}{m(\omega_M^2 - \omega^2) - im\Gamma\omega} F(\omega)$$

$$\chi_{xx}(\omega)$$

Fluctuation-dissipation theorem

General relation between noise spectrum and linear response susceptibility

$$\left\langle \delta x \right\rangle(\omega) = \chi_{xx}(\omega) F(\omega)$$
 susceptibility

$$S_{xx}(\omega) = \frac{2k_BT}{\omega} \mathrm{Im} \chi_{xx}(\omega)$$
 (classical limit)

for the damped oscillator:

$$m\ddot{x} + m\omega_M^2 x + m\Gamma\dot{x} = F$$

$$x(\omega) = \frac{1}{m(\omega_M^2 - \omega^2) - im\Gamma\omega} F(\omega)$$

$$\chi_{xx}(\omega)$$

area yields variance of x:
$$\int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} S_{xx}(\omega) = \left\langle x^2 \right\rangle \text{ ...yields temperature!}$$

Displacement spectrum

Teufel et al., Nature 2011

Measurement noise

Measurement noise

$$x_{\text{meas}}(t) = x(t) + x_{\text{noise}}(t)$$

Two contributions to $x_{\text{noise}}(t)$

2. measurement back-action:

fluctuating force on system

1. measurement imprecision laser beam (shot noise limit!)

noisy radiation pressure force

"Standard Quantum Limit"

Best case allowed by quantum mechanics:

$$S_{xx}^{(\text{meas})}(\omega) \ge 2 \cdot S_{xx}^{T=0}(\omega)$$

 $S_{xx}^{(\text{meas})}(\omega) \geq 2 \cdot S_{xx}^{T=0}(\omega)$ "Standard quantum limit (SQL) of displacement detection"

...as if adding the zero-point fluctuations a second time: "adding half a photon"

Notes on the SQL

- "weak measurement": integrating the signal over time to suppress the noise
- trying to detect slowly varying "quadratures of motion": $\hat{x}(t) = \hat{X}_1 \cos(\omega_M t) + \hat{X}_2 \sin(\omega_M t)$ $\left[\hat{X}_1, \hat{X}_2\right] = 2x_{\rm ZPF}^2 \text{ Heisenberg is the reason for SQL!}$ $\text{no limit for instantaneous measurement of } \mathbf{x}(t)!$
- SQL means: detect $\hat{X}_{1,2}$ down to $x_{\rm ZPF}$ on a time scale $1/\Gamma$ Impressive: $x_{\rm ZPF} \sim 10^{-15} m$!

Optomechanics (Outline)

Displacement detection

Linear optomechanics

Nonlinear dynamics

Interesting quantum states

Towards Fock state detection

Hybrid systems: coupling to atoms

Equations of motion

Equations of motion

Linearized optomechanics

$$\alpha(t) = \bar{\alpha} + \delta\alpha(t)$$

$$x(t) = \bar{x} + \delta x(t)$$

$$\Rightarrow \dots \Rightarrow$$

$$(\text{solve for arbitrary } F_{\text{ext}}(\omega))$$

$$\delta x(\omega) = \frac{1}{m(\omega_M^2 - \omega^2) - im\omega\Gamma + \Sigma(\omega)} F_{\text{ext}}(\omega)$$

$$\chi_{xx}^{\text{eff}}(\omega)$$

$$\delta \omega_M^2 = \frac{1}{m} \text{Re}\Sigma(\omega_M) \qquad \text{Optomechanical frequency shift ("optical spring")}$$

$$\Gamma_{\text{opt}} = -\frac{1}{m\omega_M} \text{Im}\Sigma(\omega_M) \qquad \text{Effective optomechanical damping rate}$$

Linearized dynamics

Effective optomechanical damping rate

Optomechanical frequency shift ("optical spring")

$$(\Delta = \omega_R x_0 / L)$$

Linearized dynamics

Effective optomechanical damping rate

Optomechanical frequency shift ("optical spring")

Optomechanics (Outline)

Displacement detection

Linear optomechanics

Nonlinear dynamics

Interesting quantum states

Towards Fock state detection

Hybrid systems: coupling to atoms

Self-induced oscillations

Self-induced oscillations

Beyond some laser input power threshold: instability Cantilever displacement x

Attractor diagram

Attractor diagram

Attractor diagram

Optomechanics (Outline)

Displacement detection

Linear optomechanics

Nonlinear dynamics

Interesting quantum states

Towards Fock state detection

Hybrid systems: coupling to atoms

Cooling with light

Current goal in the field: ground state of mechanical motion of a macroscopic cantilever

$$k_B T_{\rm eff} \ll \hbar \omega_M$$

Classical theory:

$$T_{\mathrm{eff}} = T \cdot \frac{\Gamma_M}{\Gamma_{\mathrm{opt}} + \Gamma_M}$$

Pioneering theory and experiments: **Braginsky** (since 1960s)

optomechanical damping rate

Cooling with light

Current goal in the field: ground state of mechanical motion of a macroscopic cantilever

$$k_B T_{\rm eff} \ll \hbar \omega_M$$

Classical theory:

Classical theory: Γ_M quantum limit? $T_{\rm eff} = T \cdot \frac{\Gamma_M}{\Gamma_{\rm opt} + \Gamma_M} \to 0$?

Pioneering theory and experiments: Braginsky (since 1960s)

optomechanical damping rate

Cooling with light

Quantum picture: Raman scattering – sideband cooling

Original idea:

Sideband cooling in ion traps – Hänsch, Schawlow / Wineland, Dehmelt 1975

Similar ideas proposed for nanomechanics:

cantilever + quantum dot – Wilson-Rae, Zoller, Imamoglu 2004

cantilever + Cooper-pair box - Martin Shnirman, Tian, Zoller 2004

cantilever + ion – Tian, Zoller 2004

cantilever + supercond. SET – Clerk, Bennett / Blencowe, Imbers, Armour 2005, Naik et al. (Schwab group) 2006

Laser-cooling towards the ground state

Optomechanics (Outline)

Displacement detection

Linear optomechanics

Nonlinear dynamics

Quantum theory of cooling

Interesting quantum states

Towards Fock state detection

Hybrid systems: coupling to atoms

Optomechanical crystals & arrays

Squeezing the mechanical oscillator state

Clerk, Marquardt, Jacobs; NJP 10, 095010 (2008) amplitude-modulated input field $\hat{x}(t)$ (similar to stroboscopic measurement) κ

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

Clerk, Marquardt, Jacobs; NJP 10, 095010 (2008)

amplitude-modulated input field (similar to stroboscopic measurement)

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

reconstruct mechanical Wigner density

(quantum state tomography)

$$W(x,p) \propto \int dy e^{ipy/\hbar} \rho(x-y/2,x+y/2)$$

Clerk, Marquardt, Jacobs; NJP 10, 095010 (2008)

amplitude-modulated input field (similar to stroboscopic measurement)

 $\hat{x}(t)$

measure only one quadrature, back-action noise affects only the other one....need: $\kappa \ll \omega_M$

reconstruct mechanical Wigner density

(quantum state tomography)

$$W(x,p) \propto \int dy e^{ipy/\hbar} \rho(x-y/2,x+y/2)$$

Clerk, Marquardt, Jacobs; NJP 10, 095010 (2008)

amplitude-modulated input field (similar to stroboscopic measurement)

measure only one quadrature, back-action noise affects

only the other one....need: $\kappa \ll \omega_M$

reconstruct mechanical Wigner density

(quantum state tomography)

$$W(x,p) \propto \int dy e^{ipy/\hbar} \rho(x-y/2,x+y/2)$$

Optomechanical entanglement

Optomechanical entanglement

Optomechanical entanglement

entangled state (light field/mechanics)

Bose, Jacobs, Knight 1997; Mancini et al. 1997

Proposed optomechanical which-path experiment and quantum eraser

Marshall, Simon, Penrose, Bouwmeester, PRL 91, 130401 (2003)

Optomechanics (Outline)

Displacement detection

Linear optomechanics

Nonlinear dynamics

Interesting quantum states

Towards Fock state detection

Hybrid systems: coupling to atoms

Optomechanical crystals & arrays

"Membrane in the middle" setup

"Membrane in the middle" setup

Experiment (Harris group, Yale)

Mechanical frequency: $\omega_M = 2\pi \cdot 134 \text{ kHz}$

Mechanical quality factor:

 $Q = 10^6 \div 10^7$

Current optical finesse:

 $7000 \div 15000 (5 \cdot 10^5)$

[almost sideband regime]

Optomechanical cooling from 300K to 7mK

1200 Thompson, Zwickl, Jayich, Marquardt, Girvin, Harris, Nature 72, 452 (2008)

Detection of displacement x: not what we need!

Detection of displacement x: not what we need!

Detection of displacement x: not what we need!

phase shift of measurement beam:

$$\hat{\theta} \propto \hat{x}(t)^2 \propto (\hat{b}(t) + \hat{b}^{\dagger}(t))^2 = \hat{b}^2 e^{-i2\omega_M t} + \hat{b}^{\dagger 2} e^{+i2\omega_M t} + \hat{b}^{\dagger \hat{b}} + \hat{b}^{\hat{b}}$$

phase shift of measurement beam:

$$\bar{\hat{\theta}} \propto \bar{\hat{x}(t)}^2 \propto \overline{(\hat{b}(t) + \hat{b}^{\dagger}(t))^2} \approx 2\hat{b}^{\dagger}\hat{b} + 1$$

(Time-average over cavity ring-down time)

QND measurement of phonon number!

Signal-to-noise

ratio:

$$\frac{ au\Delta\omega^2}{S\omega}$$

Optical freq. shift

per phonon:
$$\Delta \omega = x_{\rm ZPF}^2 \omega''$$

Noise power of

freq. measurement:

$$S_{\omega} = \frac{\kappa}{16\bar{n}_{\text{cavity}}}$$

Ground state lifetime:

$$\frac{1}{\tau} = \Gamma \bar{n}_{\text{thermal}}$$

Signal-to-noise

ratio:

$$\frac{\tau\Delta\omega^2}{S}$$

Optical freq. shift

per phonon:
$$\Delta \omega = x_{\rm ZPF}^2 \omega''$$

Noise power of freq. measurement:

$$S_{\omega} = \frac{\kappa}{16\bar{n}_{\text{cavity}}}$$

Ground state lifetime:

$$\frac{1}{\tau} = \Gamma \bar{n}_{\text{thermal}}$$

Optomechanics (Outline)

Displacement detection

Linear optomechanics

Nonlinear dynamics

Interesting quantum states

Towards Fock state detection

Hybrid systems: coupling to atoms

Optomechanical crystals & arrays

Atom-membrane coupling

Note: Existing works simulate optomechanical effects using cold atoms

K.W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, Nature Phys. 4, 561 (2008).

F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Science **322**, 235 (2008).

...profit from small mass of atomic cloud

Here: Coupling a single atom to a macroscopic mechanical object

Challenge: huge mass ratio

Strong atom-membrane coupling via the light field

existing experiments on "optomechanics with cold atoms": labs of Dan-Stamper Kurn (Berkeley) and Tilman Esslinger (ETH)

collaboration:

LMU (M. Ludwig, FM, P. Treutlein),

Innsbruck (K. Hammerer, C. Genes, M. Wallquist, P. Zoller),

Boulder (J.Ye), Caltech (H. J. Kimble)

Hammerer et al., PRL 2009

Goal:

$$\hat{H} = \hbar \omega_{\rm at} \hat{a}^{\dagger} \hat{a} + \hbar \omega_{m} \hat{b}^{\dagger} \hat{b} + \hbar G_{\rm eff} (\hat{a}^{\dagger} + \hat{a}) (\hat{b}^{\dagger} + \hat{b})$$
atom membrane atom-membrane coupling

Optomechanics (Outline)

Displacement detection

Linear optomechanics

Nonlinear dynamics

Interesting quantum states

Towards Fock state detection

Hybrid systems: coupling to atoms

Optomechanical crystals & arrays

Many modes

Scaling down

Scaling down

Scaling down

Vahala, Kippenberg, Carmon, ...

microtoroids

optomechanics in photonic circuits

optomechanical crystals

Optomechanical crystals

free-standing photonic crystal structures

optical modes

Fundamental 202 THz $V_{eff} = 1.38 (\lambda_0/n)^3$

Second Order 195 THz $V_{eff} = 1.72 (\lambda_0/n)^3$

Third Order 189 THz V_{eff} = 1.89 (λ₀/n)³ **vibrational modes**

Breathing Mode 2.24 GHz $m_{eff} = 334 \text{ fg}$

Accordian Mode 1.53 GHz $m_{eff} = 681 \text{ fg}$

Pinch Mode 898 MHz $m_{eff} = 68 \text{ fg}$

advantages:

tight vibrational confinement: high frequencies, small mass (stronger quantum effects)

tight optical confinement: large optomechanical coupling (100 GHz/nm)

integrated on a chip

Optomechanical arrays

collective nonlinear dynamics: classical / quantum

cf. Josephson arrays

Dynamics in optomechanical arrays

Outlook

- 2D geometries
- Quantum or classical information processing and storage (continuous variables)
- Dissipative quantum many-body dynamics (quantum simulations)
- Hybrid devices: interfacing GHz qubits with light

Photon-phonon translator

(concept: Painter group, Caltech)

$$\hat{H} = \dots + \hbar g_0 (\hat{a}_2^{\dagger} \hat{a}_1 + \hat{a}_1^{\dagger} \hat{a}_2) (\hat{b} + \hat{b}^{\dagger})$$

Superconducting qubit coupled to nanomechanical resonator

piezoelectric nanomechanical resonator

(GHz @ 20 mK: ground state!)

swap excitation between qubit and mechanical resonator in a few ns!

Conversion of quantum information

Recent trends

- Ground-state cooling: success! (spring 2011)
 [Teufel et al. in microwave circuit;
 Painter group in optical regime]
- Optomechanical (photonic) crystals
- Multiple mechanical/optical modes
- Option: build arrays or 'optomechanical circuits'
- Strong improvements in coupling
- Possibly soon: ultrastrong coupling (resolve single photonphonon coupling)
- Hybrid systems: Convert GHz quantum information (superconducting qubit) to photons
- Hybrid systems: atom/mechanics [e.g. Treutlein group]
- Levitating spheres: weak decoherence!

[Barker/ Chang et al./ Romero-Isart et al.]

Optomechanics: general outlook

Fundamental tests of quantum mechanics in a new regime: entanglement with 'macroscopic' objects, unconventional decoherence? [e.g.: gravitationally induced?]

Mechanics as a 'bus' for connecting hybrid components: superconducting qubits, spins, photons, cold atoms,

Precision measurements
[e.g. testing deviations from Newtonian gravity due to extra dimensions]

Optomechanical circuits & arrays Exploit nonlinearities for classical and quantum information processing, storage, and amplification; study collective dynamics in arrays

Optomechanics

Recent review on optomechanics: APS Physics 2, 40 (2009)

Recent review on quantum limits for detection and amplification: Clerk, Devoret, Girvin, Marquardt, Schoelkopf; RMP 2010